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C O N S P E C T U S

Spectral line shapes in a condensed phase contain infor-
mation from various dynamic processes that modulate

the transition energy, such as microscopic dynamics, inter-
and intramolecular couplings, and solvent dynamics. Because
nonlinear response functions are sensitive to the complex
dynamics of chemical processes, multidimensional vibrational
spectroscopies can separate these processes. In multidimen-
sional vibrational spectroscopy, the nonlinear response func-
tions of a molecular dipole or polarizability are measured
using ultrashort pulses to monitor inter- and intramolecular
vibrational motions. Because a complex profile of such sig-
nals depends on the many dynamic and structural aspects of
a molecular system, researchers would like to have a theo-
retical understanding of these phenomena.

In this Account, we explore and describe the roles of dif-
ferent physical phenomena that arise from the peculiarities
of the system-bath coupling in multidimensional spectra. We
also present simple analytical expressions for a weakly cou-
pled multimode Brownian system, which we use to analyze
the results obtained by the experiments and simulations.

To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to
the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator
model or a vibration energy state model. In principle, both models should give the same results as long as the energy states
are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of non-
linear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spec-
troscopies can easily handle three or four energy states involved in high-frequency vibrations.

However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynam-
ics to put the system in a thermal equilibrium state. The roles of these excitation and relaxation processes are different and
complicated compared with those in the resonant spectroscopy. Observing the effects of such thermal processes is more intu-
itive with the oscillator model because the bath modes, which cause the fluctuation and dissipation processes, are also
described in the coordinate space. This coordinate space system-bath approach complements a realistic full molecular dynam-
ics simulation approach.

By comparing the calculated 2D spectra from the coordinate space model and the energy state model, we can examine
the role of thermal processes and anharmonic mode-mode couplings in the energy state model. For this purpose, we
employed the Brownian oscillator model with the nonlinear system-bath interaction. Using the hierarchy formalism, we
could precisely calculate multidimensional spectra for a single and multimode anharmonic system for inter- and intramo-
lecular vibrational modes.

I. Introduction

Spectral line shapes in a condensed phase con-

tain information from various dynamic processes,

including such important processes as microscopic

dynamics, inter- and intramolecular couplings, and

solvent dynamics, all of which modulate the tran-

sition energy.1 Energy and phase relaxations as

well as thermal excitations take place whenever a

system is affected by coupling to other degrees of

freedom and the resultant line shape from mole-

cules in the condensed phase is broadened and

overlapped.2 Due to the sensitivity of nonlinear

response functions to complex dynamics, multidi-

mensional vibrational spectroscopies are capable
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of separating the above-mentioned processes. Fifth-order two-

dimensional (2D) Raman3-6 and third-order 2D infrared (IR)

spectroscopies7-10 are such examples. The fifth-order Raman

response is represented by the three-body correlation func-

tion of polarizability, Π, whereas the third-order IR response

is represented by the four-body correlation function of dipole,

µ. They are expressed as1,2

RRaman
(5) (t2, t1) )- 1

p2
〈[[Π(q̂(t12)), Π(q̂(t1))], Π(q̂)]〉 (1)

and

RIR
(3)(t3, t2, t1) )- i

p3
〈[[[µ(q̂(t123)), µ(q̂(t12))], µ(q̂(t1))], µ(q̂)]〉

(2)

where we denote the set of molecular coordinates by q̂ ) (q̂1,

q̂2, q̂3,...) and set t12 ≡ t1 + t2 and t123 ≡ t1 + t2 + t3. The

Hamiltonian for the vibrational modes is expressed in the

molecular coordinate q̂i as the coupled oscillators by

HA ) ∑
i

(12 p̂i
2 + Ui(q̂i)) + ∑

i,j

U'(q̂i, q̂j) + ∑
i,j,k

U''(q̂i, q̂j, q̂k) + ...

(3)

where Ui(q̂i) is the potential for mode i and U′(q̂i,q̂j) and

U′′(q̂i,q̂j,q̂k) are the anharmonic mode-mode interactions. The

optical responses of molecular vibrational motions have been

studied theoretically in either a molecular coordinate or a

vibrational energy state representation.1 The coordinate rep-

resentation is physically intuitive since the optical observables

(the dipole moments, µ(q̂), or the Raman polarizabilities, Π(q̂))

are also described by the molecular coordinates. The energy

state representation employs the energy eigenfunctions of a

molecular motion and is physically equivalent to the oscilla-

tor model in the coordinate representation. Accordingly, laser

interactions are described by the transitions between the

energy states, and the optical processes, including the time

ordering of the laser pulses, are conveniently described by dia-

grams such as the double-sided Feynman diagrams.1,2 The

energy-state model has the advantage of identifying peak

positions of the optical signals in the frequency domain, since

the peaks appear as the transition between the energy states.

Although dynamics does not change regardless of the rep-

resentation, a difference appears if the thermal excitation and

relaxation processes are included into the system dynamics to

have the thermal equilibrium in a certain time period. To illus-

trate this point, we consider the bath Hamiltonian described by

the bath mode x̂Ri that is attached to the system as Ĥtot ) ĤA

+ ĤB, where

ĤB )
1
2∑

i
∑
αi [p̂αi

2 + ωαi

2(x̂αi
-

cαi
V(q̂i)

ωαi

2 )2] (4)

The system-bath interaction is assumed to be linear plus

square in the system coordinate as V(q̂i) ) �LLq̂i + �SLq̂i
2/2, but

linear in the bath coordinates.11-13 The coupling to the bath

can be interpreted as the anharmonic interaction to the opti-

cally inactive modes. As shown in Figures 1 and 2, while the

linear-linear interaction (LL) mainly contributes to energy

relaxation, the square-linear (SL) system-bath interaction

leads to the vibrational dephasing for the slow modulation

case due to the frequency fluctuation of system vibration.14-19

This can be seen by introducing the energy eigenstate repre-

sentation of ĤA expressed by |ni〉 for eigenvalue pωni/2 and by

expressing the SL interaction as q̂i
2∑cRi�SLx̂Ri f q̂i

2Xi(t), where

Xi(t) is the noise induced by the bath oscillators. If we neglect

the dissipation and only consider the fluctuation arising from

the SL interaction, the effective Hamiltonian, H′A(t) is expressed

as2

FIGURE 1. Schematic illustrations of the effects of the linear-linear
(LL) and the square-linear (SL) system-bath couplings on a Morse
potential system. The black lines represent the unperturbed
potential, while the colored lines represent the perturbed one. The
LL coupling swings the position of the potential, whereas the SL
coupling shakes the potential surface. Due to the anharmonicity of
the potential, the LL interaction deforms the potential inducing a
slight frequency fluctuation.

FIGURE 2. Schematic views of homogeneous (fast-modulation
limit) and inhomogeneous (slow-modulation limit) distributions of
the potential system perturbed by the SL system-bath interaction.
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H'A(t) ) p
2∑

i
∑
ni

[ωni
+ δΩni

(t)]|ni〉〈ni|

+ ∑
i,j

∑
nimj

U'nimj
|ni〉〈mj| + ... (5)

where δΩni(t) ) 2Xi(t)〈ni|q̂i
2|ni〉/p is the frequency fluctuation

induced by the bath modes. This is the commonly used Hamil-

tonian to account for the vibrational dephasing and the fre-

quency fluctuations are treated in the framework of the

multistate stochastic theory.20-28 We should notice that the

bath effects consist of the fluctuation and dissipation parts,

both of which ensure the thermal equilibrium state of the

entire system through the fluctuation-dissipation theorem.

This stochastic model neglects the dissipation part of the bath

effects and does not reach the thermal equilibrium state as the

steady state.2 However, it turns out that the stochastic model

explains the high-frequency intramolecular vibrational mode

very well for the slow modulation case (vibrational dephas-

ing case) as shown in section II.18

While the mechanisms as well as the effects of thermal pro-

cesses is not clear in the stochastic energy state model, it is

more intuitive to see the oscillator model represented by the

coordinate, since the bath modes, which cause the excitation

and relaxation processes, are also described in the coordi-

nate space. This coordinate space system-bath approach is

also complementary to a realistic full molecular dynamics sim-

ulation approach. In this Account, we explore and clarify the

roles of different physical phenomena arising from the pecu-

liarities of the system-bath coupling via the multidimensional

spectra. We also present simple analytical expressions for a

weakly coupled multimode Brownian system because they are

convenient to analyze the results obtained by the experiments

and simulations.

II. System-Bath Approach and Stochastic
Approach to Intramolecular Vibrational
Mode
The validity of the oscillator model was assessed by compar-

ing the 2D signals calculated from the total Hamiltonian, Ĥtot

) ĤA + ĤB, and from the effective stochastic Hamiltonian,

H′A(t), for a single mode case. While the spectra for the effec-

tive Hamiltonian H′A(t) are calculated from the multistate sto-

chastic theory using the Liouville space response function, the

exact spectra for the total Hamiltonian, Ĥtot ) ĤA + ĤB are

obtained by solving the reduced equation of motion. The char-

acter of the bath is determined by the spectral distribution of

the system-bath interaction, J(ω). If we set J(ω) ∝ ωγ2/(γ2 +
ω2), the thermal fluctuation induced by the bath exhibits a sto-

chastic Gaussian-Markovian modulation defined by

〈δΩ(t′)δΩ(t′′)〉 ∝ exp[-γ(t′ - t′′)], in which γ corresponds to the

inverse correlation time of the noise.2 As was shown by Tan-

imura et al., such a dissipative system can be treated by uti-

lizing a tridiagonal hierarchy of equations (the

Gaussian-Markovian quantum Fokker-Planck

equations).29,30 For a low temperature case, the structure of

hierarchy becomes complicated because of the quantum

nature of the heat bath characterized by Matsubara

frequencies.31-33 However there is a rigorous but simple way

to terminate the hierarchy, by reducing the quantum

Fokker-Planck equation with low-temperature correction

terms.34 The key to calculate the nonlinear response func-

tions is the quantum coherence between the system and the

bath, which plays an essential role for strong system-bath

coupling.35 Up to now, only the hierarchy equation approach

could handle the quantum dynamics for nonlinear response

functions under the strong coupling at low temperature with-

out the rotating wave approximation. We employ the same

parameters given in ref 18 and describe a high-frequency

intramolecular vibrational mode by the Morse oscillator UA(q)

) pωA[1 - exp(-RAq)]2/(2RA
2) with ωA ) 1616 cm-1 and RA

) 0.1, and the LL and SL coupling strengths, �LL ) 0.05ωA and

�SL ) 0.05ωA, respectively. Throughout this Account, the vibra-

tional coordinate q is dimensionless, and the temperature is

set to be T ) 300 K. Then we consider the fast modulation

(homogeneous) case, γ-1 ) 6.6 fs, and the slow modulation

(inhomogeneous) case, γ-1 ) 0.66 ps. The calculated signals

are plotted as the 2D correlation IR spectra defined for the

positive ω1 and ω3 by36-39

IC(ω3, t2, ω1) ) Im{∫0

∞
dt1∫0

∞
dt3 e-iω1t1 e+iω3t3 RR

(3)(t3, t2, t1)}

+ Im{∫0

∞
dt1∫0

∞
dt3 eiω1t1 e+iω3t3 RNR

(3) (t3, t2, t1)} (6)

where RR
(3)(t3,t2,t1) and RNR

(3) (t3,t2,t1) are the rephasing and non-

rephasing response functions, respectively, and we define the

correlation spectra using the opposite sign of the response

functions to adapt the commonly used definition. The rephas-

ing response, RR
(3)(t3,t2,t1), and the nonrephasing response,

RNR
(3) (t3,t2,t1), can be separately detected using the phase match-

ing conditions.40 In the above expressions, the double Fou-

rier transformation entangles absorptive and dispersive

contributions to 2D spectra and hence causes the distorted

line shape called the phase-twisted line. By adding the two

terms corresponding to the rephasing and nonrephasing

responses in equal weights, we can remove the dispersive

contribution to obtain the pure absorptive line shape. Theo-

retically, while we can easily separate RR
(3)(t3,t2,t1) and RNR

(3) (t3,t2,t1)
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by choosing the specific Liouville paths in the energy state

model,1 we have to employ a phase matching transforma-

tion for the calculated response functions in the coordinate

state case.41 Note that if we use the plain response function,

RIR
(3)(t3,t2,t1) defined by eq 2, in eq 6 instead of RR

(3)(t3,t2,t1) and

RNR
(3) (t3,t2,t1), we cannot extract the nonrephasing contribution

completely and the direction of the nodal line may be differ-

ent from the true one. Besides the phase matching transfor-

mation, one may also eliminate the undesired rephasing

contribution by utilizing the Fourier transformation of

IC(ω3,t2,ω1) for t2 to remove the oscillating contribution in the

t2 period with the frequency 2ω0, where ω0 is the character-

istic frequency of the system.42,43 The calculated correlation

spectra with t2 ) 0 is presented in Figure 3. The red positive

peaks and the blue negative peaks correspond to the 0 f 1

f 0 and 0 f 1 f 2 transitions, respectively. The direction of

the nodal lines denoted by the dashed lines represents the

extent of correlation (memory effects) between the vibrational

coherences of the t1 and t3 periods. The direction parallel to

the ω1 axis is the uncorrelated case, while the direction par-

allel to the ω1 ) ω3 line is the fully correlated case. The width

of the peak parallel to the ω1 ) ω3 direction corresponds to

the inhomogeneous broadening, whereas that perpendicular

to ω1 ) ω3 is the homogeneous broadening.44-46 Figure 3a,b

shows the 2D correlation IR spectra IC(ω3,t2 ) 0,ω1) of the

Morse oscillator in the motional narrowing regime. The cor-

relation is lost even at t2 ) 0, and the nodal lines are hori-

zontal. Due to the two-quantum transition induced by the SL

interaction, the relaxation 2f 0 is allowed, while the LL inter-

action causes mainly one-quantum transition, 1f 0 and 2f

1, because of small anharmonicity. As a result, the coherence

between |1〉 and |2〉 is destroyed by both of the two energy

relaxation paths, 2f 1 and 2f 0, although that between |0〉
and |1〉 is affected only by the relaxation 1 f 0. Hence, the

negative peak in the exact case is very different from the sto-

chastic case. Figure 3c,d illustrates the 2D correlation IR spec-

FIGURE 3. Two dimensional correlation IR spectra, IC(ω3,t2 ) 0,ω1), of the Morse oscillator in the motional narrowing regime (a, b), and the
dephasing (spectral diffusion) regime (c, d).18 The exact spectra a and c are calculated from the hierarchy equation approach, while the
spectra b and d are calculated from the stochastic approach corresponding to the cases a and c, respectively. The read positive-going peaks
arise from the 0 f 1 f 0 transition, whereas the blue negative-going peaks arise from the 0 f 1 f 2 transition. The direction of the nodal
lines denoted by the dashed lines represents the extent of correlation (or memory effects) between vibrational coherences denoted by ω1

and ω3.
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tra for the slow modulation (static) case. In this case, the

spectral widths are broadened due to the dephasing (spec-

tral diffusion regime) not due to the energy relaxation. The

exact and stochastic results are similar, apart from the small

blue shifts caused by the dissipation from the colored noise

bath. It is shown that, while the condition �pγ/2 , 1 is met,

the signals from a multistate stochastic three-state model

agree very well with the signals from a high-frequency Morse

potential model with the LL + SL interaction. This is because

under such conditions, the characteristic time scale of bath

motion (γ-1) is incompatibly slow compared with that of sys-

tem one (ωA
-1), and it is hard for the system to dissipate its

excess energy to the bath.18

III. Intermolecular Vibrational Modes

While a simple energy state model with the stochastic mod-

ulation describes the dephasing fairly well for high-frequency

intramolecular vibrational modes, it is not easy to construct a

theory based on the energy state representation for low-fre-

quency intermolecular modes, where the thermal excitation

and relaxation exchange the population and coherence

between a number of low-frequency energy states. As a ref-

erence, we present the 2D IR spectra for the intermolecular

vibration of liquid molecules calculated from the full molecu-

lar dynamics (MD) simulation approach. Three full MD meth-

ods have been developed for multidimensional vibrational

spectroscopies: (1) the equilibrium approach that computes,

exactly or approximately, a nonlinear optical response func-

tion expressed in the multiple Poisson brackets of the equi-

librium molecular trajectories;47-49 (2) the nonequilibrium MD

(NEMD) approach that performs the 2D spectroscopy experi-

ment on the computer;50 and (3) the hybrid approach of the

first and the second methods.51 The present result shown in

Figure 4 was obtained for HF liquid from the NEMD approach

with a backward-forward trajectories sampling method. The

details of calculations are described in ref 42. The echo-like

peaks caused by the rephasing of the dipole element appear

along t1 ) t3. We also observed many peaks parallel to t1 )
t3 corresponding to the interference between the coherences

in t1 and t3 periods. A similar profile was also found in the sim-

ulated 2D IR spectra for the intermolecular vibrational motion

of water.43

The model calculations for low-frequency vibrations with LL

+ SL interactions were performed using the hierarchy equa-

tions of motion approach.2,15-17 We found that the MD result

was similar to the results in the slow modulation case of the

Morse oscillator and harmonic oscillator models with the SL

interaction. While the Morse result was closer to the simula-

tion result,2 here we present the harmonic result since this

result is instructive to see the cause of twin positive and neg-

ative peaks. In Figure 5, we present the time-domain and 2D

correlation spectra for the harmonic potential with the fre-

quency ωA ) 38.7 cm-1 and the system-bath coupling

parameters �SL
A ) 0.1ωA and γA ) 0.1ωA. The calculation

details for the time-domain signal are explained in refs 2, 15,

and 17. The 2D correlation spectrum is calculated from the

time-domain 2D signal for different t2(0 e t2 e 1.2 ps) with

Fourier transformation used to remove the oscillating contri-

bution with the frequency 2ωA.42,43

It is important to notice that in the harmonic oscillator

model, the third-order IR response vanishes when the dipole

moment is expressed only as a linear function of the molec-

ular coordinate because the contributions to the response

function from the different Liouville pathways interfere

destructively.2 If the SL interaction is presented, however, the

FIGURE 4. Two-dimensional IR signals of HF liquid at room
temperature obtained from the full MD simulation. Panel a is the
time domain signal RIR

(3)(t3,t2 ) 0,t1), whereas panel b is the 2D
correlation spectrum, IC(ω3,t2 ) 0,ω1). The red and blue peaks
represent the positive and negative contributions, respectively.
Reprinted with permission from ref 42. Copyright 2008 American
Institute of Physics.
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signal appears since the interference between the different

Liouville paths is disturbed due to the frequency fluctuation

nature of the SL interaction and the interference being partly

ceased. This indicates that the positive and negative peaks of

2D spectrum in Figure 5 arise not from the anharmonicity but

from the dephasing. Since the dephasing for the transition 0

f 1 f 2 takes part after the excitation is created by the first

and second pulses, the elongation of the negative peak

toward the lower frequency of ω3 occurs in Figure 5b.

IV. Multimode Oscillator System with
Anharmonic Coupling
Even in the high-frequency case, an anharmonically coupled

multimode system is not easy to handle in the energy-state

representation, especially for such a case that each of the

modes interacts with different bath environments. Using the

hierarchy formalism, we can also study the multimode sys-

tem based on the coordinate space representation. Here, we

show the calculated results for an anharmonically coupled

two-mode system.19 The two modes A and B are described by

the Morse potentials Uj(qj) ) pωj[1 - exp(-Rjqj)]2/(2Rj
2) for j )

A or B with the parameters ωA ) 1565.7 cm-1, ωB ) 1666.7

cm-1, and RA ) RB ) 0.1. The anhramonic coupling between

the two modes is given by U′(q̂A,q̂B) ) p(gAAB
(3) qA

2qB +
gABB

(3) qAqB
2)/2 with gAAB

(3) ) gABB
(3) ) -40 cm-1. To explore the cor-

relation among different modes through the baths, we con-

sider two cases of system-bath couplings. One is (a) a

correlated case that the two modes A and B are coupled to a

bath BA, and the other is (b) an uncorrelated case that the two

modes A and B are independently coupled to the two baths

BA and BB, respectively. Since the LL couplings play minor roles

in high-frequency intravibrational motion, we set them to be

zero. The SL coupling strengths and inverse noise correlation

for BA and BB are given by �SL
A ) �SL

B ) 0.4ωA and γA ) γB )
0.004ωA, respectively. The 2D IR correlation spectra with t2 )
0 for the case a is presented in Figure 6a, while that for the

case b is illustrated in Figure 6b. The anharmonic coupling

between two modes appears as the off-diagonal peaks. The

upper positive off-diagonal peaks, for example, correspond to

the 0A f 1A ∼ 1B f 0B transition, while upper negative off-

diagonal ones correspond to the 0A f 1A ∼ 1B f 2B transi-

tion for the energy state jA or jB for mode A or B, respectively.

The transition induced by the anharmonic coupling is denoted

by “∼”. In the case in Figure 6a, the off-diagonal peaks are

tilted parallel to the diagonal peaks, which arise mainly from

the rephasing pathways. In the case in Figure 6b, while diag-

onal peaks for mode A and mode B are similar to those in the

case in Figure 6a, the gradient of the off-diagonal peaks in the

correlation spectrum is slightly upward. This occurs because

the noise on mode A and the noise on mode B are not cor-

related. These results can be compared with the experimen-

tal results obtained by Khalil, Demirdöven, and Tokmakoff.9

V. Analytical Expressions for Nonlinear
Response Functions
Although we can calculate a variety of spectra based upon the

coordinate representation by solving the hierarchy equations

of motion, this approach requires reasonably strong CPU

power to obtain 2D contour maps of signals for different t1, t2,

and t3. Since the molecular motions are more or less harmonic

in many vibrational spectroscopy cases, we can treat the

anharmonic contribution of vibrations perturbatively. This

allows us to reduce the nonlinear response function to a

handy analytical form for the system-bath Hamiltonian by

carrying out the functional integrals. This is the oldest

approach to derive the response functions for multidimen-

FIGURE 5. Two-dimensional IR signals for the low-frequency
intermolecular vibrational mode obtained from the hierarchy
equation approach.2,15,17 Panel a is the time-domain signal,
RIR

(3)(t3,t2 ) 0,t1), whereas panel b is the correlation spectrum,
IC(ω3,t2 ) 0,ω1).
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sional vibrational spectroscopies such as the fifth-order Raman

and third-order IR, which are equivalent to the second-order

IR and seventh-order Raman, respectively. The expressions

were derived for a harmonic oscillator system with the non-

linear polarizability or dipole,3,52,53 an anharmonic

oscillator,54-56 a dipolar rotator,57 and a multimode system

with anharmonic couplings58-60 or dipole-dipole interactions

in order to explore the structural changes.61,62

Here, we present the nonlinear response functions for the

fifth-order Raman and the third-order IR for anharmonically

coupled oscillators and display the 2D IR correlation spectra.

The Hamiltonian for the system is assumed to be

HA ) ∑
i

1
2

pi
2 + 1

2!∑i

ωi
2qi

2 + 1
3!∑ijk gijk

(3)qiqjqk

+ 1
4!∑ijkl

gijkl
(4)qiqjqkql (7)

If the anharmonicity is weak, we can obtained the fifth-order

Raman and third-order IR response functions in terms of anti-

symmetric correlation function, Ci(t,s) ) 〈qi(t),qi(s)〉/p as58-60

RRaman
(5) (t2, t1) )-∑

i,j,k,l

gijk
(3)∫0

t2 dτ Ci(t12, t1 + τ)

× Cj(t1 + τ, 0)Ck(t1 + τ, t1) (8)

and

RIR
(3)(t3, t2, t1) )-∑

i,j,k,l

gijkl
(4)Sijkl

2 ∫0

t3 dτ Ci(t123, t12 + τ)

× Cj(t12 + τ, 0)Ck(t12 + τ, t1)Cl(t12 + τ, t12) (9)

where Sijkl is the symmetry factor defined in ref 60. For the LL

system-bath interaction with the bath spectral distribution,

Ji(ω) ≡ ∑ωδ(ω - ωRi) ) �iω, we have the correlation function

in the form Ci(t,s) ) θ(t - s)sin[�i(t - s)]/�i, where �i ) (ωi
2 -

�i
2/4)1/2. In this formalism, the SL interaction plays a more

complicated role than LL interaction and could derive the ana-

lytical expression only for the linear response function.12 As

we saw in section III, the dissipation part of thermal effect is

not essential for the intramolecular vibrations in the static or

slow modulation case. Therefore, in the static case, we may

include the effects of the vibrational dephasing by adding the

Gaussian random variable δΩi to the mode frequency as ωi +
δΩi and by averaging the response functions for different �i )
[(ωi + δΩi)2 - �i

2/4]1/2. If we generate the time-dependent sto-

chastic variable δΩi(t), which satisfies both 〈δΩi(t)〉 ) 0 and

〈δΩi(t)δΩi〉 ) fi(t), where fi(t) is the noise correlation function,

we can study spectra for any forms of fi(t) by using the expres-

sions

Ci(t, s) ) θ(t - s) 1
�i(0)

sin[∫s

t
dτ �i(τ)] (10)

and

FIGURE 6. The 2D correlation IR spectrum, IC(ω3,t2 ) 0,ω1), for the multimode system with anharmonic mode-mode coupling calculated
from the hierarchy equations of motion (taken from ref 19). In panel a, the two modes A and B are coupled to a single bath, whereas in
panel b, the two modes A and B are independently coupled to two baths. The widths of the peaks parallel to the ω1 ) ω3 direction
represent inhomogeneous broadening, whereas those perpendicular to ω1 ) ω3 represents homogeneous broadening. The twin peaks arise
from the 0 f 1 f 0 transition (red) and the 0 f 1 f 2 transition (blue). The diagonal peaks correspond to the mode frequencies of A and
B, whereas the off-diagonal peaks correspond to the A to B or B to A coupled modes. The direction of the nodal lines denoted by the
dashed lines represents the extent of correlation between vibrational coherences associated with frequencies ω1 and ω3. Because the baths
are not correlated in panel b, the correlation of the coherence between the two modes is small and the dashed lines on the off-diagonal
positions are closer to the horizontal direction than those found in panel a.
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�i(t) ) √(ωi + δΩi(t))
2 - γi

2 ⁄ 4 (11)

where the reduced frequency �i(t) can be imaginary for 〈ωi +
δΩi(t)〉 < γi/2. It is interesting to notice that the above expres-

sions are quantum mechanical expressions derived from the

functional integral approach, but they do not contain the Plank

constant. Thus, the expressions eqs 8 and 9 with eqs 10 and

11 are identical in both the quantum and classical cases. This

is because the major quantum effect for a nearly harmonic

system is the zero point oscillation. Such effect is canceled in

vibrational spectroscopy, since we measure not the absolute

energy state but the difference between the energy states.

We now examine the expression of the third-order IR

response function for a multimode system with anharmonic-

ity UA(qA) ) gA
(4)qA

4, UB(qB) ) gB
(4)qB

4, and U′(qA,qB) ) gAABB
(4) qA

2qB
2.

We set the oscillators parameters as ωA ) 1550 cm-1, ωB )
1650 cm-1, gA

(4) ) gB
(4) ) gAABB

(4) . The LL interactions for the A

and B modes are set by �A ) 2.6 × 10-3ωA and �B ) 3.0 ×
10-3ωB, respectively. The correlation functions of stochastic

modulation are assumed to be fi(t) ) ∆i
2 exp[-γSL

i t]. Note that

although here we consider the Gaussian-Markovian noise as

the frequency modulation, we can handle any noise includ-

ing the non-Gaussian and non-Markovian noise if we can gen-

erate a sequence of the noise fi(t) numerically. We also assume

the two independent heat baths for the mode A and B to have

different amplitudes, ∆A ) 5.2 × 10-2ωA and ∆B ) 3.8 ×
10-2ωB, and noise correlations, γSL

A ) 0.25ωA and γSL
B )

0.30ωB, respectively. To have the correlation spectra from full

response function, we extract the undesired rephasing contri-

bution, which oscillates as the function of t2 as cos [∫
0
t2(�i(t) +

�j(t)) dt], from the analytical expression. The calculated corre-

lation spectrum is shown in Figure 7. Since the amplitude and

correlation time of the A and B modes are different, the widths

of the diagonal peaks are different. While the case in Figure

3 assumed cubic anharmonic coupling, the present case con-

siders a quartic anharmonic one. We found that if the ampli-

tude of the stochastic fluctuation δΩi(t) is large and the noise

correlation time 1/γSL
i is short, the nodal lines tend to be hor-

izontal reflecting the loss of the correlation.

VI. Conclusions

Multidimensional vibrational spectra can be conveniently ana-

lyzed by a system-bath model in the coordinate representa-

tion with nonlinear system-bath interactions. As an

application of the oscillator model, we calculate the correla-

tion spectra for inter- and intramolecular vibrational motions.

We explore the validity of the energy state model with the sto-

chastic energy state modulation by comparing the calculated

multidimensional IR correlation spectra for the high-frequency

intramolecular vibrational mode. It was found that while the

energy state model worked very well in the slow modulation

case, it failed to explain the profile of the signal in the fast

modulation case in Figure 3a, where the system reached the

thermal equilibrium state quickly.

Multimode systems attached to a single bath and multi-

ple baths are employed to demonstrate the role of the

system-bath coherence in the multidimensional spec-

troscopies. The handy analytical expressions are also shown

to be useful if the stochastic modulation is slow enough.

Although we limit our discussions for the oscillatory motion in

this Account, we can easily apply our coordinate-based

approach to the chemical reaction system63,64 and photodis-

sociation system with electrically excitation states.65 Since we

describe the system in the coordinate space, the classical and

quantal correspondences can be easily studied by replacing

the quantal equations of motion with the classical ones. To

study the multidimensional spectra for such complicated sys-

tems as a complex liquid system and a biomolecular system

with a MD approach, one needs to know the limitation of the

classical simulation. Our model calculations for the quantum

and classical cases allow us to confirm the applicability of MD

approach. We should also mention that although we regard

the coordinate as the molecular coordinate to have the

dynamics for anharmonic potentials, we may use the same

framework to explore the free energy landscape by means of

multidimensional spectroscopies if we regard the coordinates

as macroscopic variables.66 Such approach must be a valu-

FIGURE 7. Two dimensional correlation IR spectra, IC(ω3,t2 ) 0,ω1),
for the multimode system with quartic anharmonicity calculated
from eq 9.60 Effects of vibrational dephasing are taken into account
by introducing the numerically generated colored noise in the
resonant frequencies and by averaging the response function over
the noise sequence.
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able method for analyzing spectra obtained by multidimen-

sional terahertz spectroscopy, where the collective motions

play a major role.59
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